Seite wählen

NETWAYS Blog

Apache Rewrite von HTTP auf HTTPS am Beispiel von Icinga Web 2

Heute gibt es einen kleinen Tipp, wie man seine über einen Apache ausgelieferten Seiten, von HTTP einfach auf HTTPS umleiten kann. Eine einfache Rewrite-Regel sorgt dafür, dass beliebige URLs korrekt auf HTTPS umgeleitet werden. So sind auch als HTTP-URLs gespeicherte Bookmarks weiterhin uneingeschränkt nutzbar. Voraussetzung ist das Laden der Modules rewrite.

Das nun folgende Beispiel bezieht sich auf die Default-Site, es kann aber leicht für weitere Sites abgewandelt werden. Hierzu ist das Beispiel um die Direktiven ServerName und optional ServerAlias zu ergänzen.


<VirtualHost *:80>
RewriteEngine on
RewriteRule ^ https://%{SERVER_NAME}%{REQUEST_URI} [END,NE,R=permanent]
</VirtualHost>


<VirtualHost _default_:443>
SSLEngine on
Alias /icingaweb2 "/usr/share/icingaweb2/public"
...
</VirtualHost>

Alle weiteren für TLS und Icinga Web 2 nötigen Einstellungen wurden hier ausgelassen.

Lennart Betz
Lennart Betz
Senior Consultant

Der diplomierte Mathematiker arbeitet bei NETWAYS im Bereich Consulting und bereichert seine Kunden mit seinem Wissen zu Icinga, Nagios und anderen Open Source Administrationstools. Im Büro erleuchtet Lennart seine Kollegen mit fundierten geschichtlichen Vorträgen die seinesgleichen suchen.

Graphite-API für Grafana und Icinga Web 2

Ziel dieses Posts ist es, am Ende die Metriken über die Graphite-API als Backend für Grafana und das Icinga-Web-2-Module graphite betreiben zu können.

Grafana übernimmt hierbei optional die Visualisierung über eigene Dashboards, was ansonsten Graphite-Web leistet. Für Icinga Web 2 ist Grafana nur erforderlich, falls nicht das Module graphite zum Einsatz kommen soll, sondern stattdessen grafana zur Darstellung im Icinga Web 2 verwendet werden sollte.

Die Graphite-API ist in Python implementiert und soll hierbei via HTTPS angesprochen werden. Zusätzlich ist der Zugriff via Basis-Authentifizierung zu beschränken. Dies alles überlassen wir dem Apache, auch die API lassen wir mittels WSGI im Apache laufen.

Der Vorteil gegenüber dem Graphite-Web liegt darin, die ganzen Django-Bibliotheken nicht zu benötigen und auch kein DB-Backend a la SQLite, MySQL oder PostgreSQL. Nachteil ist, das Projekt Graphite-API wird nicht vom Graphite-Team betrieben, somit ist die Pflege und Aktualität nicht sichergestellt.
mehr lesen…

Lennart Betz
Lennart Betz
Senior Consultant

Der diplomierte Mathematiker arbeitet bei NETWAYS im Bereich Consulting und bereichert seine Kunden mit seinem Wissen zu Icinga, Nagios und anderen Open Source Administrationstools. Im Büro erleuchtet Lennart seine Kollegen mit fundierten geschichtlichen Vorträgen die seinesgleichen suchen.

TLS: Eine kleine Übersicht

Der durschnittliche Internetbenutzer benutzt TLS (Transport Layer Security) mittlerweile auf fast allen größeren Websiten – ohne, dass sich dieser darüber bewusst wäre, in den allermeisten Fällen. Auch in meiner Ausbildung bei NETWAYS darf ich mich nun intensiv mit TLS beschäftigen. Doch was ist TLS? Dieser Text soll einen groben Umriss um die zugrunde liegenden Prinzipien und Techniken hinter TLS legen.

Warum brauchen wir TLS?

TLS wird benötigt, um drei Probleme zu lösen. Unsere Kommunikationen sollen verschlüsselt sein – wir wollen nicht, dass Pakete oder Informationen, die wir übertragen, abgehört werden. Außerdem wollen wir sicher gehen, dass der andere Teilnehmer dieser Kommunikation auch derjenige ist, mit dem wir diesen Austausch an Informationen vollziehen wollen. Darüber hinaus wäre es auch gut, sich darauf verlassen zu können, dass das, was von der einen Seite losgeschickt wurde, auch das ist, was der andere erhält. Um diese drei Probleme kümmert sich TLS. Doch wie macht es das?

Eine Beispielverbindung:

1. ClientHello

Ein Client verbindet sich mit einem Server und verlangt eine gesichertete Verbindung. Dazu wird die Version von TLS übertragen, und eine Chiffrensammlung, aus denen sich der Server die Verschlüsselungsmethode aussuchen kann.

2. ServerHello & Certificate & ServerKeyExchange

Der Server antwortet, welches Chiffre verwendet werden soll, und einem Zertifikat, welches den Server authentifizieren soll und einen öffentlichen Schlüssel enthält.

3. ClientKeyExchange

Dieses Zertifikat wird von dem Client verifiziert, und der öffentliche Schlüssel des Servers wird vom Client benutzt, um ein pre-master secret zu erstellen, welcher dann wieder an den Server geschickt wird.

Der Server entschlüsselt das pre-master secret, und beide Parteien nutzen es, um einen geheimen, geteilten Schlüssel zu erstellen, welcher als shared secret bezeichnet wird.

4. ChangeCipherSpec

Der Client versendet die erste, mit dem shared secret verschlüsselte Nachricht, welche der Server entschlüsseln soll, damit geprüft werden kann, ob die Verschlüsselung richtig initialisiert wurde. Wenn diese Verifizierung erfolgreich abgelaufen ist, kommunizieren dann der Client und der Server verschlüsselt untereinander. Dieser ganze Prozess wird als TLS-Handshake bezeichnet.



Geschichte: TLS wurde unter dem Vorläufernamen SSL (Secure Sockets Layer) in 1994 von Netscape für den damals sehr populären Browser Mosaic vorgestellt. Version 2.0 und 3.0 folgten jeweils ein Jahr später. 1999 wurde SSL 3.1 bei der Aufnahme als Standart von der Internet Engineering Task Force in TLS 1.0 umbenannt. 2006 folgte Version 1.1, 2008 1.2 und 2018 die heutige Version 1.3.


Asymmetrische & Symmetrische Verschlüsselung: TLS ist zunächst asymmetrisch, dann symmetrisch verschlüsselt. Was bedeutet das? Nun, hier kommen die Schlüsselpaare ins Spiel. TLS benötigt einen öffentlichen und einen privaten Schlüssel. Der öffentliche Schlüssel wird benutzt, damit der Gegenpart einen Vorschlüssel erstellen kann, welcher dann von dem privaten Schlüssel wieder decodiert wird. Das ist eine asymmetrische Verschlüsselung – welche allerdings deutlich kostenintensiver und aufwändiger ist, und sich dementsprechend nicht für die zahlreichen Anwendungsmöglichkeiten für eine TLS-Verbindung eignet. Dank‘ dem Vorschlüssel können allerdings beide Seiten des Austausches einen gemeinsamen, geheimen Schlüssel berechnen, mit Hilfe dessen die verschlüsselten Nachrichten auf jeweils beiden Seiten entschlüsselt werden können. Somit ist der Kern von TLS eine symmetrische Verschlüsselung; der Austausch der tatsächlichen Information passiert über diesen Kanal. Um aber an diesen Punkt zu kommen, sind asymmetrische Verschlüsselungsprinzipien im Einsatz.


Zertifikate: Wie in dem TLS-Handshake betrachtet, sind Zertifkate elementar zur Ausweisung und Identifikation von Server und Client – und wohl der kritischste Punkt in dem ganzen TLS-Ablauf. Damit ein Kommunikationspartner identifiziert werden kann, muss er sein Zertifikat ausweisen, welches seine Identiät beweist. Ausgestellt wird ein Zertifikat von einer certificate authority, einem vertrauenswürdigen Aussteller dieser Zertifikate, was verschiedenste Dinge bedeuten kann: Viele multinationale Konzerne stellen kommerziell Zertifikate aus, darunter fallen Firmen wie IdenTrust, Sectigo und DigiCert Group. Es existieren allerdings auch einige non-profit organisations, wie CAcert und Let’s Encrypt, die als Zertifizierungsstelle auftreten. Darüber hinaus gibt es natürlich auch jede Menge Zertifikatsaussteller innerhalb von Netzen, welche in der Hand von einem vertrauenswürdigen Admin liegen.


Chiffrensammlung: Eine Chiffrensammlung ist eine Auflistung aus den Verschlüsselungsmethoden, die bei einer TLS-Verbindung eingesetzt werden können. Beispiele dafür wären RSA, MD5, SHA. Bei einer TLC-Verbindung wird in ClientHello und ServerHello unter den beiden beteiligten Parteien kommuniziert, welche dieser Methoden zur Verfügung für den Aufbau der Verbindung stehen.


https: Doch was hat es nun mit https auf sich? Ganz einfach: https (HyperText Transfer Protocol Secure) ist eine Extension von http, bei der http über eine verschlüsselte TLS-Verbindung versendet wird, was sie im Gegensatz zu Klartext-http vor unerwünschten Abschnorchelungen und sonstigen Attacken schützt.


Verbreitung: Laut der regelmäßig auf einen neuen Stand gebrachten Auswertung von SSL Labs von rund 140.000 Webpages bieten gerade mal 67.2% eine adequate TLS-Ausstattung. Das mag im ersten Moment etwas niedrig erscheinen, man darf aber auch nicht vergessen, dass diese Lage vor nicht allzu langer Zeit noch deutlich, deutlich schlimmer war, und durch Maßnahmen wie einer automatischen Warnung von Chrome verbessert wurde. So hat sich auch laut Firefox Telemetry die Anzahl der per https aufgerufenen Websiten sich von 25% auf 75% erhöht. Ebenso bemerkenswert: Einem Jahr nach Einführung von TLS 1.3 unterstützen gerade mal 15% den aktuellen Standart, der absolut überwiegende Teil bietet noch hauptsächlich TLS 1.2 an. Man darf gespannt sein, wie lange es dauert, bis der Großteil den Wechsel vollzogen hat. Auf der anderen Seite bieten 7.5% der Webpages noch Unterstüztung für SSL 3.0 an, einem Standart, der mittlerweile fast so alt ist wie ich selbst, und als nicht sicher gilt.

 

 

 

Realisierung einer clientbasierten Zertifikats-Authentifizierung (Mutual SSL) mit selbstsignierten Zertifikaten auf Linux + Apache

Die IT-Landschaften der Unternehmen wachsen prächtig – und auch die Anforderungen an die Sicherheit der dort gespeicherten Daten, denn besonders sensible Daten sind für so manch einen besonders interessant.
Passwörter werden noch heute viel genutzt, aber die vergangenen Jahre haben bewiesen, dass hier vor allem der Nutzer eine Schwachstelle darstellt. Passwörter werden hier sehr bequem; also zu kurz, mehrfach auf verschiedenen Diensten oder leicht zu erraten, gewählt.
Da nützt die beste Verschlüsselung im Zweifel nicht viel, wenn das Passwort auf einer der unzähligen Passwort-Listen im Internet rumschwirrt. Auch Phishing stellt ein Problem dar und nutzt die Unaufmerksamkeit der Nutzer aus. Kürzlich erhielten wir von einem unserer Managed-Services Kunden die Anfrage, ob wir nicht dafür eine Lösung haben. Das Stichwort „clientbasierte Zertifikats-Authentifizierung“ kam dabei vom Kunden. Wenn man danach sucht, findet man schnell den Fachbegriff Mutual SSL Authentication (also gegenseitige SSL Authentifikation).
Gesagt, getan. Wir haben eine Lösung auf seinem Managed-Server-System bereitgestellt und zu Abnahmetests aufgefordert – das Ergebnis überzeugt. Für den Zugang zum Webdienst des Kunden braucht man nun kein Passwort mehr und es ist sicherer als zuvor. Aber wie genau funktioniert das?

  1. Der Nutzer beantragt Zugang auf eine geschützte Ressource
  2. Der Server antwortet nun neben seinen TLS-Zertifikat mit seinem Serverzertifikat
  3. Der Client verifiziert das erhaltene Zertifikat
  4. Der Client vertraut dem Zertifikat und übersendet sein Publickey
  5. Der Server überprüft die vom Client erhaltenen Daten
  6. Der Server gewährt dem Client Zugang zum gewünschten Medium

Im nachfolgenden Beispiel werde ich die Vorgehensweise zur Erstellung der selbstsignierten Zertifikate, Konfiguration des Webservers (hier Apache) und Einbindung in den Webbrowser beschreiben. Ausgangssituation ist ein aktuelles Linux mit Apache (dieser nutzt für TLS bereits Zertifikate). Tools wie openssl und vim sehe ich jetzt mal als gegeben.
Wir wechseln zunächst auf die grüne Wiese und erstellen uns einen neuen Ordner, z. B. /usr/local/src/SSL
1. Erstellung eines firmenweiten rootca-Zertifikates-Privatekeys mit 4096 BIT Schlüssellänge

openssl genrsa -out ssl.netways.de_rootca.key 4096

2. Nun erstellen wir ein Serverzertifikat mit 10 Jahren Gültigkeit, dies kann natürlich individuell angepasst werden

openssl req -x509 -new -nodes -key ssl.netways.de_rootca.key -sha256 -days 3650 -out ssl.netways.de_rootca.pem


3. Wir erstellen einen Key unseres ersten Clients, dieser kann natürlich individuell benannt werden, damit die Unterscheidung leichter fällt

openssl genrsa -out ssl.netways.de_client1.key 4096

4. Für den soeben erstellten Client-Key erstellen wir nun eine Zertifikatsanforderung, CSR
Eine Besonderheit, ist hier dass wir als OU (also Organizational Unit, bzw. Abteilung) ein Mitarbeiter-Kürzel (im Beispiel gmimietz) angeben, dazu später mehr

openssl req -new -key ssl.netways.de_client1.key -out ssl.netways.de_client1.csr


5. Wir legen schnell die erforderlichen Daten an, damit wir nicht die ganze OpenSSL-Config umbauen müssen

mkdir -p demoCA/newcerts && mkdir demoCA/certs && mkdir demoCA/crl && echo 00 > demoCA/serial && touch demoCA/index.txt

6. Jetzt signieren wir das CSR des Clients gegen unsere Serverzertifikate und erstellen ein Clientzertifikat mit 10 Jahren Gültigkeit, dies auf Korrektheit überprüfen und bestätigen.

openssl ca -in ssl.netways.de_client1.csr -cert ssl.netways.de_rootca.pem -keyfile ssl.netways.de_rootca.key -out ssl.netways.de_client1.crt -days 3650

7. Abschließend exportieren wir das Clientzertifikat und den Key übertragungstauglich in PKCS12-Format, hierzu wird ein Passwort abgefragt, welches wir später beim Import wieder brauchen.

openssl pkcs12 -export -in ssl.netways.de_client1.crt -inkey ssl.netways.de_client1.key -out NETWAYS_Client_gmimietz.p12

8. wir kopieren unseren rootca in unser ca-Verzeichnis (wichtig, dies muss dort mit crt benannt sein, um im nächsten Schritt eingelesen zu werden)

cp /usr/local/src/SSL-TEST/ssl.netways.de_rootca.pem /usr/local/share/ca-certificates/ssl.netways.de_rootca.crt

9. Zunächst aktualisieren wir unseren Zertifikats-Store mit

update-ca-certificates

10. In der Apache-Config brauchen wir noch ein paar kleine Anpassungen innerhalb der jeweiligen vhost-Definition

SSLCACertificatePath "/etc/ssl/certs"
SSLVerifyClient require
SSLVerifyDepth 5

11. Falls wir einem Zertifikat das Vertrauen entziehen möchten, so müssten wir eine Unterscheidung sicherstellen, deshalb haben wir in Punkt 4 eine OU angegeben, diese dient nur der Unterscheidung

<location />
  SSLRequire (%{SSL_CLIENT_S_DN_OU} ne "gmimietz")
</location>

12. Final starten wir den Apache neu

service apache2 restart

13. Zertifikat auf Client importieren
Wir importieren das Zertifikat (p12-File aus Schritt 7) unseren Browser. Dazu brauchen wir unser Entschlüsselungspasswort wieder, womit wir den Export verschlüsselt haben.
Im Firefox gehen wir hierzu auf Einstellungen -> Datenschutz & Sicherheit -> Zertifikate anzeigen.
Dort importieren wir im Register „Ihre Zertifikate“ nun das p12-File und geben einmalig das Passwort ein.

Für die Anlage weiterer Client-Zertifikate führen wir die Schritte 3., 4., 6., 7. erneut aus und unterscheiden mittels Nutzernamen anhand der OU.
Fertig, wird laufen. Bitte noch beachten, dass andere Vhost-Configs natürlich auch abgedichtet werden müssen, falls die in das gleiche Doc-Root mit sensiblen Daten zeigen!
Ja, so tolle Sachen machen wir – was der Kunde sich wünscht, setzen wir um!

Icinga Web 2 – todsicher.

Nachdem ich mich zuletzt in den Sänften Apples ausgeruht habe, geht es heute zurück ans eingemachte – oder besser gesagt: Back to the Roots! Selbst als alter Icinga Web 2– und Modulentwickler habe ich noch längst nicht alle Vorzüge dieses Feldes beansprucht.
Einer davon ist die Möglichkeit, alles Mögliche für die Authentifizierung herzunehmen. Einzige Voraussetzung: der Webserver muss mitspielen. Manche Authentifizierungsverfahren gelten als sicher, andere nur wenn das Passwort weise gewählt ist… aber zumindest eines ist todsicher: TLS (aka „SSL“) Client-Zertifikate. Die Vorteile liegen auf der Hand:

  • mit der folgenden Anleitung relativ einfach umzusetzen
  • Erstellung unsicherer Zertifikate (analog zu den Passwörtern) nicht möglich
  • keine geheimen/privaten Schlüssel werden während der Authentifizierung übertragen (kann man von Passwörtern nicht behaupten)
  • Unbefugte werden schon vom Webserver „abgefangen“ und kommen gar nicht erst an Icinga Web 2 heran

Na dann riegeln wir mal ab…

Zertifikate erstellen

Sowohl der Webserver als auch jeder Client brauchen je ein TLS-Zertifikat, das von einer der Gegenseite vertrauenswürdigen Zertifizierungsstelle (CA) unterschrieben ist. Diese Unterschriften könnte ich einkaufen oder kostenlos beziehen, aber der Einfachheit halber erstelle ich mir für beide Seiten je eine CA und unterschreibe je ein Zertifikat.
Die Sänfte Apples bieten in der Schlüsselbundverwaltung einen Zertifikatsassistenten, aber auch der eingefleischte Linux-Sysadmin hat mit Openssl ein Umfangreiches Bordmittel zur Verfügung.

Server

Im Gegensatz zum Client müssen Nutzer beider Betriebssysteme darauf achten, dass das Server-Zertifikat über einen sog. „subjectAltName“ verfügt. Sonst staunt man beim Aufbau der Umgebung nicht schlecht: Trotz Vertrauen in die CA und passendem commonName erkennt zumind. Google Chrome das Zertifikat nicht an.
Die hervorgehobenen Stellen müssen höchst wahrscheinlich an die eigene Umgebung angepasst werden – z.B. eine Domäne statt einer IP Adresse und damit auch CN_KIND=DNS.

openssl req -x509 -newkey rsa:4096 -subj '/CN=example com CA - server' -md5 -keyout ca-server.key -out ca-server.crt -nodes
CN_KIND=IP ; CN=172.28.128.3
openssl req -newkey rsa:4096 -subj "/CN=$CN" -keyout server.key -out server.csr -nodes
openssl x509 -req -in server.csr -sha512 -out server.crt -CA ca-server.crt -CAkey ca-server.key -CAcreateserial -extensions SAN -extfile <(printf '[SAN]\nsubjectAltName=%s:%s' "$CN_KIND" "$CN")

Client

Bis auf den hier nicht nötigen „subjectAltName“ – das gleiche in grün.

openssl req -x509 -newkey rsa:4096 -subj '/CN=example com CA - client' -md5 -keyout ca-client.key -out ca-client.crt -nodes
openssl req -newkey rsa:4096 -subj '/CN=Alexander Klimov' -keyout client.key -out client.csr -nodes
openssl x509 -req -in client.csr -sha512 -out client.crt -CA ca-client.crt -CAkey ca-client.key -CAcreateserial

Kleines Easter-Egg am Rande: Es spielt keine Rolle, ob ein Root-CA-Zertifikat mit SHA512, MD5 oder handschriftlich signiert wurde, da es nur auf dessen Vorhandensein im eigenen Schlüsselbund ankommt.

Zertifikate importieren

Ein nicht offizielles Server-CA-Zertifikat und das eigene Client-Zertifikat muss natürlich in den Browser importiert werden. Dafür ist ein kleiner Zwischenschritt nötig:

alexanders-mbp:debian aklimov$ openssl pkcs12 -in client.crt -inkey client.key -export -out client.p12
Enter Export Password:
Verifying - Enter Export Password:
alexanders-mbp:debian aklimov$

„client.p12“ (und evtl. „ca-server.crt“) kann anschließend in den Browser importiert werden. Leider ist ein temporäres Passwort unumgänglich, aber „123456“ o.ä. geht auch.
Wer diesen Schritt verschleppt, fällt bei der Einrichtung von Icinga Web 2 auf die Nase: Entweder beschwert sich der Browser über eine „nicht sichere“ Verbindung oder der Webserver weist die Verbindung ab.

Icinga Web 2 installieren

DIST=$(awk -F"[)(]+" '/VERSION=/ {print $2}' /etc/os-release); \
echo "deb http://packages.icinga.com/debian icinga-${DIST} main" >  /etc/apt/sources.list.d/${DIST}-icinga.list; \
echo "deb-src http://packages.icinga.com/debian icinga-${DIST} main" >>  /etc/apt/sources.list.d/${DIST}-icinga.list
wget -qO - https://packages.icinga.com/icinga.key | apt-key add -
apt update
apt install icingaweb2 -y
cp /vagrant/server.crt /etc/ssl/certs/todsicher.pem
cp /vagrant/server.key /etc/ssl/private/todsicher.pem
cp /vagrant/ca-client.crt /etc/ssl/certs/todsicher-ca.pem
a2dissite 000-default.conf
a2enmod ssl
a2enmod headers
vim /etc/apache2/sites-available/todsicher.conf
a2ensite todsicher.conf
service apache2 restart

Nachdem das Icinga-Repository hinzugefügt wurde, kann auch schon das Paket „icingaweb2“ installiert werden. Dieses bringt den Apache-Webserver mit und integriert sich entsprechend. Darauf hin müssen die Zertifikate installiert und deren Verwendung konfiguriert werden.

/etc/apache2/sites-available/todsicher.conf

<VirtualHost *:80>
	ServerAdmin webmaster@localhost
	DocumentRoot /var/www/html
	ErrorLog ${APACHE_LOG_DIR}/error.log
	CustomLog ${APACHE_LOG_DIR}/access.log combined
	RewriteEngine On
	RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R=301,L]
</VirtualHost>
<VirtualHost *:443>
	ServerAdmin webmaster@localhost
	DocumentRoot /var/www/html
	ErrorLog ${APACHE_LOG_DIR}/error.log
	CustomLog ${APACHE_LOG_DIR}/access.log combined
	SSLEngine on
	SSLCertificateFile /etc/ssl/certs/todsicher.pem
	SSLCertificateKeyFile /etc/ssl/private/todsicher.pem
	Header always set Strict-Transport-Security "max-age=2678400"
	SSLCACertificateFile /etc/ssl/certs/todsicher-ca.pem
	SSLVerifyClient require
	SSLVerifyDepth 1
	SSLUserName SSL_CLIENT_S_DN_CN
</VirtualHost>

Sollte jemand auf die Idee kommen, den Server mit HTTP anzusprechen, wird er bedingungslos auf HTTPS umgeleitet – und diese Tat auch nicht wiederholen.
Außerdem wird ein TLS-Client-Zertifikat verlangt, das von entsprechender CA unterschrieben sein muss. Dessen commonName wird im Erfolgsfall als Nutzername behandelt – und genau auf diesen Zug springt Icinga Web 2 auf…

Icinga Web 2 einrichten

Nun greift man via Browser auf Icinga Web 2 zu und richtet es wie gewohnt ein… naja, fast wie gewohnt…


Nachdem der Browser nach dem zu verwendenden Client-Zertifikat gefragt hat, grüßt die Anmeldemaske, die auf den Einrichtungsassistenten verweist. Dieser fordert wie zu erwarten den Einrichtungstoken. Nach dessen Eingabe habe ich ausnahmsweise sämtliche Module deaktiviert, da… dieser Blogpost eh schon viel zu lang ist. (Aber nur die Ruhe, wir haben’s schon fast.)
Nach einer kleinen Anpassung der PHP-Konfiguration und einem darauf folgenden Neustart des Webservers…

root@contrib-stretch:~# perl -pi -e 's~^;date\.timezone =.*?$~date.timezone = Europe/Berlin~' /etc/php/7.0/apache2/php.ini
root@contrib-stretch:~# service apache2 restart

… bestätigt auch schon die erste Ausnahme die Regel: Der Typ des Authentifizierungs-Backends ist auf „Extern“ zu setzen, da dies der Webserver übernimmt. Die folgenden Einstellungen des Backends können bei dem voreingetragenen belassen werden. Wenn alles richtig konfiguriert wurde, schlägt der Assistent den bedienenden Benutzer als Administrator vor. Ab da bleiben nur noch die Formalitäten…

Fazit

Wer auf das Monitoring-System Zugriff hat, hat viel Macht.

Bernd Erk, NETWAYS CEO
Tja Bernd, auf mein Monitoring-System hat kein Unbefugter mehr Zugriff – todsicher.

Alexander Klimov
Alexander Klimov
Senior Developer

Alexander hat 2017 seine Ausbildung zum Developer bei NETWAYS erfolgreich abgeschlossen. Als leidenschaftlicher Programmierer und begeisterter Anhänger der Idee freier Software, hat er sich dabei innerhalb kürzester Zeit in die Herzen seiner Kollegen im Development geschlichen. Wäre nicht ausgerechnet Gandhi sein Vorbild, würde er von dort aus daran arbeiten, seinen geheimen Plan, erst die Abteilung und dann die Weltherrschaft an sich zu reißen, zu realisieren - tut er aber nicht. Stattdessen beschreitet er mit der Arbeit an Icinga Web 2 bei uns friedliche Wege.