pixel
Select Page

JSON in bequem

by | Aug 24, 2018 | Development

Wenn man mit diversen Tools arbeitet, die wir in diesem Blog immer wieder bearbeitet, stößt man unweigerlich irgendwann auf JSON formatierte Texte. Während es sicher für den einen oder anderen IT-God kein Problem ist, das JSON im Hirn zu parsen und JSON-formatierter Text höchstens eine angenehme Erleichterung zu Bytecode ist, möchte ich hier kurz zweieinhalb Wege für Sterbliche vorstellen, um im
Wirrwarr von Klammern nicht die Übersicht zu verlieren.
Dabei bringen manche Dienste bereits eine Möglichkeit mit, den Output einfacher lesbar zu machen, andere verlassen sich dabei ganz auf externe Tools. Warum er nicht immer “einfach” gehalten wird, lässt sich ganz einfach damit erklären, das JSON eingentlich eh nur entworfen wurde, um von Maschinen verarbeitet zu werden und Menschen in den Wahnsinn zu treiben. Da sorgen Zeilenumbrüche und Einrückungen nur dafür, dass unnötig viele Daten übertragen werden.
Die REST API von Elasticsearch bietet je nach Endpunkt mal schön formatiertes, mal unformatierters JSON an.

# curl localhost:9200
{
  "name" : "y2G7v2X",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "1KYRb5mUQ8CaTSJDM-6djQ",
  "version" : {
    "number" : "6.3.2",
    "build_flavor" : "default",
    "build_type" : "rpm",
    "build_hash" : "053779d",
    "build_date" : "2018-07-20T05:20:23.451332Z",
    "build_snapshot" : false,
    "lucene_version" : "7.3.1",
    "minimum_wire_compatibility_version" : "5.6.0",
    "minimum_index_compatibility_version" : "5.0.0"
  },
  "tagline" : "You Know, for Search"
}

Dagegen sieht jeder Unterpunkt entsprechend unübersichtlich aus.

# curl localhost:9200/_cluster/health
{"cluster_name":"elasticsearch","status":"green","timed_out":false,"number_of_nodes":2,"number_of_data_nodes":2,"active_primary_shards":341,"active_shards":682,"relocating_shards":0,"initializing_shards":0,"unassigned_shards":0,"delayed_unassigned_shards":0,"number_of_pending_tasks":0,"number_of_in_flight_fetch":0,"task_max_waiting_in_queue_millis":0,"active_shards_percent_as_number":100.0}

Für Elasticsearch (und mittlerweile auch für Icinga 2!) gibt’s hier aber Abhilfe durch den Schalter ?pretty.

# curl localhost:9200/_cluster/health?pretty
{
  "cluster_name" : "elasticsearch",
  "status" : "green",
  "timed_out" : false,
  "number_of_nodes" : 2,
  "number_of_data_nodes" : 2,
  "active_primary_shards" : 341,
  "active_shards" : 682,
  "relocating_shards" : 0,
  "initializing_shards" : 0,
  "unassigned_shards" : 0,
  "delayed_unassigned_shards" : 0,
  "number_of_pending_tasks" : 0,
  "number_of_in_flight_fetch" : 0,
  "task_max_waiting_in_queue_millis" : 0,
  "active_shards_percent_as_number" : 100.0
}

Da man diverse JSON Monster aber auch mal als Datei vorliegen hat oder nicht alle Dienste solche Komfortfunktionen bieten, braucht man immer wieder externe Hilfe. Dafür gibt’s die Allroundlösung, die überall funktioniert, wo Python installiert ist, also quasi bei jedem ernst zu nehmenden Betriebssystem.

# curl -s localhost:9200/_cluster/health | python -m json.tool
{
    "active_primary_shards": 341,
    "active_shards": 682,
    "active_shards_percent_as_number": 100.0,
    "cluster_name": "elasticsearch",
    "delayed_unassigned_shards": 0,
    "initializing_shards": 0,
    "number_of_data_nodes": 2,
    "number_of_in_flight_fetch": 0,
    "number_of_nodes": 2,
    "number_of_pending_tasks": 0,
    "relocating_shards": 0,
    "status": "green",
    "task_max_waiting_in_queue_millis": 0,
    "timed_out": false,
    "unassigned_shards": 0
}

Das war’s dann aber auch schon mit dem, was man einfach auf diese Weise machen kann. Oft reicht das ja auch aus. Wer aber gern etwas mehr an Möglichkeiten haben will, sollte sich unbedingt mal jq installieren.

# curl -s localhost:9200/_cluster/health | jq
{
  "cluster_name": "elasticsearch",
  "status": "green",
  "timed_out": false,
  "number_of_nodes": 2,
  "number_of_data_nodes": 2,
  "active_primary_shards": 341,
  "active_shards": 682,
  "relocating_shards": 0,
  "initializing_shards": 0,
  "unassigned_shards": 0,
  "delayed_unassigned_shards": 0,
  "number_of_pending_tasks": 0,
  "number_of_in_flight_fetch": 0,
  "task_max_waiting_in_queue_millis": 0,
  "active_shards_percent_as_number": 100
}

Soweit so fad. Ausser, dass ich auf meiner Shell noch schöne farbliche Hervorhebungen sehe und Ihr im Blog hier nicht. 😛
Interessant wird’s dann aber, wenn man mit jq anfängt, den Output auch gleich zu filtern. Dazu ein Auszug eines API Outputs von Icinga 2.

{
  "results": [
    {
      "attrs": {
        "__name": "canis",
        "acknowledgement": 0.0,
        "acknowledgement_expiry": 0.0,
[...]
    },
    "joins": {},
    "meta": {},
    "name": "canis",
    "type": "Host"
  },
[...]

Wenn man den Output dann durch einen jq Aufruf inkl. Filtern schickt, kann man auf die eigentlich interessanten Daten filtern. Ich hab’ mir freundlicherweise genehmigt, die folgenden Beispiele aus dem Icinga 2 Buch zu entnehmen.

$ curl ... |jq '{name: .results[].name}'
{
  "name": "canis"
}
{
  "name": "fornax"
}
{
  "name": "virgo"
}
[...]

Diese Filter kann man dann beliebig erweitern.

$ curl ... |jq '{name: .results[].name, address: .results[].attrs.address}'
{
  "name": "sculptor"
  "address": "172.16.2.11"
}
{
  "name": "fornax"
  "address": "172.16.1.11"
}
...

Eine umfassende Anleitung für jq gibt’s auch. Je nach Bedarf kann es sich aber auszahlen, sich erstmal diverse Tutorials anzusehen, da hier oft der Zugang etwas leichter gemacht wird.

Thomas Widhalm
Thomas Widhalm
Lead Systems Engineer

Pronomina: er/ihm. Anrede: "Hey, Du" oder wenn's ganz förmlich sein muss "Herr". Thomas war Systemadministrator an einer österreichischen Universität und da besonders für Linux und Unix zuständig. Seit 2013 ist er bei der NETWAYS. Zuerst als Consultant, jetzt als Leiter vom Operations Team der NETWAYS Professional Services, das unter anderem zuständig ist für Support und Betriebsunterstützung. Nebenbei hat er sich noch auf alles mögliche rund um den Elastic Stack spezialisiert, schreibt und hält Schulungen und macht auch noch das eine oder andere Consulting zum Thema. Privat begeistert er sich für Outdoorausrüstung und Tarnmuster, was ihm schon mal schiefe Blicke einbringt...
More posts on the topic Development

Kleine Weihnachtspyramide mit Raspberry Pi

Noch einmal schlafen und dann ist Weihnachten. Passend dazu haben wir von NETWAYS ein kleines Experiment zum selber Nachbauen vorbereitet. Es handelt sich um eine kleine Weihnachtspyramide, die sich mithilfe von Python Code und ein paar Bauteilen ein wenig bewegt und...

Alle Jahre wieder, kommt der Advent of Code

...zumindest seit 2015. Bereits zum achten Mal haben Rätsel- und Programmierfreunde rund um die Welt in der Nacht vom 30. November auf den 1. Dezember dieses Jahr gebannt auf die Veröffentlichung des ersten Rätsels gewartet. Ihr habt davon noch nie gehört und wollt...

Ansible – Testing roles with Molecule

Ansible is a widely used and a powerful open-source configuration and deployment management tool. It can be used for simple repetitive daily tasks or complex application deployments, therefore Ansible is able to cover mostly any situation. If used in complex or...

NETWAYS Support Collector Roadmap

Den Support Collector konnte ich bereits in meinem letzten Blogpost vorstellen. Für alle die den Beitrag verpasst haben, hier kurz umrissen was es ist: Bei dem Tool handelt es sich um einen von uns geschriebenen Datensammler, welche alle möglichen Support relevanten...