TLS: Eine kleine Übersicht

Der durschnittliche Internetbenutzer benutzt TLS (Transport Layer Security) mittlerweile auf fast allen größeren Websiten – ohne, dass sich dieser darüber bewusst wäre, in den allermeisten Fällen. Auch in meiner Ausbildung bei NETWAYS darf ich mich nun intensiv mit TLS beschäftigen. Doch was ist TLS? Dieser Text soll einen groben Umriss um die zugrunde liegenden Prinzipien und Techniken hinter TLS legen.

Warum brauchen wir TLS?

TLS wird benötigt, um drei Probleme zu lösen. Unsere Kommunikationen sollen verschlüsselt sein – wir wollen nicht, dass Pakete oder Informationen, die wir übertragen, abgehört werden. Außerdem wollen wir sicher gehen, dass der andere Teilnehmer dieser Kommunikation auch derjenige ist, mit dem wir diesen Austausch an Informationen vollziehen wollen. Darüber hinaus wäre es auch gut, sich darauf verlassen zu können, dass das, was von der einen Seite losgeschickt wurde, auch das ist, was der andere erhält. Um diese drei Probleme kümmert sich TLS. Doch wie macht es das?

Eine Beispielverbindung:

1. ClientHello

Ein Client verbindet sich mit einem Server und verlangt eine gesichertete Verbindung. Dazu wird die Version von TLS übertragen, und eine Chiffrensammlung, aus denen sich der Server die Verschlüsselungsmethode aussuchen kann.

2. ServerHello & Certificate & ServerKeyExchange

Der Server antwortet, welches Chiffre verwendet werden soll, und einem Zertifikat, welches den Server authentifizieren soll und einen öffentlichen Schlüssel enthält.

3. ClientKeyExchange

Dieses Zertifikat wird von dem Client verifiziert, und der öffentliche Schlüssel des Servers wird vom Client benutzt, um ein pre-master secret zu erstellen, welcher dann wieder an den Server geschickt wird.

Der Server entschlüsselt das pre-master secret, und beide Parteien nutzen es, um einen geheimen, geteilten Schlüssel zu erstellen, welcher als shared secret bezeichnet wird.

4. ChangeCipherSpec

Der Client versendet die erste, mit dem shared secret verschlüsselte Nachricht, welche der Server entschlüsseln soll, damit geprüft werden kann, ob die Verschlüsselung richtig initialisiert wurde. Wenn diese Verifizierung erfolgreich abgelaufen ist, kommunizieren dann der Client und der Server verschlüsselt untereinander. Dieser ganze Prozess wird als TLS-Handshake bezeichnet.



Geschichte: TLS wurde unter dem Vorläufernamen SSL (Secure Sockets Layer) in 1994 von Netscape für den damals sehr populären Browser Mosaic vorgestellt. Version 2.0 und 3.0 folgten jeweils ein Jahr später. 1999 wurde SSL 3.1 bei der Aufnahme als Standart von der Internet Engineering Task Force in TLS 1.0 umbenannt. 2006 folgte Version 1.1, 2008 1.2 und 2018 die heutige Version 1.3.


Asymmetrische & Symmetrische Verschlüsselung: TLS ist zunächst asymmetrisch, dann symmetrisch verschlüsselt. Was bedeutet das? Nun, hier kommen die Schlüsselpaare ins Spiel. TLS benötigt einen öffentlichen und einen privaten Schlüssel. Der öffentliche Schlüssel wird benutzt, damit der Gegenpart einen Vorschlüssel erstellen kann, welcher dann von dem privaten Schlüssel wieder decodiert wird. Das ist eine asymmetrische Verschlüsselung – welche allerdings deutlich kostenintensiver und aufwändiger ist, und sich dementsprechend nicht für die zahlreichen Anwendungsmöglichkeiten für eine TLS-Verbindung eignet. Dank’ dem Vorschlüssel können allerdings beide Seiten des Austausches einen gemeinsamen, geheimen Schlüssel berechnen, mit Hilfe dessen die verschlüsselten Nachrichten auf jeweils beiden Seiten entschlüsselt werden können. Somit ist der Kern von TLS eine symmetrische Verschlüsselung; der Austausch der tatsächlichen Information passiert über diesen Kanal. Um aber an diesen Punkt zu kommen, sind asymmetrische Verschlüsselungsprinzipien im Einsatz.


Zertifikate: Wie in dem TLS-Handshake betrachtet, sind Zertifkate elementar zur Ausweisung und Identifikation von Server und Client – und wohl der kritischste Punkt in dem ganzen TLS-Ablauf. Damit ein Kommunikationspartner identifiziert werden kann, muss er sein Zertifikat ausweisen, welches seine Identiät beweist. Ausgestellt wird ein Zertifikat von einer certificate authority, einem vertrauenswürdigen Aussteller dieser Zertifikate, was verschiedenste Dinge bedeuten kann: Viele multinationale Konzerne stellen kommerziell Zertifikate aus, darunter fallen Firmen wie IdenTrust, Sectigo und DigiCert Group. Es existieren allerdings auch einige non-profit organisations, wie CAcert und Let’s Encrypt, die als Zertifizierungsstelle auftreten. Darüber hinaus gibt es natürlich auch jede Menge Zertifikatsaussteller innerhalb von Netzen, welche in der Hand von einem vertrauenswürdigen Admin liegen.


Chiffrensammlung: Eine Chiffrensammlung ist eine Auflistung aus den Verschlüsselungsmethoden, die bei einer TLS-Verbindung eingesetzt werden können. Beispiele dafür wären RSA, MD5, SHA. Bei einer TLC-Verbindung wird in ClientHello und ServerHello unter den beiden beteiligten Parteien kommuniziert, welche dieser Methoden zur Verfügung für den Aufbau der Verbindung stehen.


https: Doch was hat es nun mit https auf sich? Ganz einfach: https (HyperText Transfer Protocol Secure) ist eine Extension von http, bei der http über eine verschlüsselte TLS-Verbindung versendet wird, was sie im Gegensatz zu Klartext-http vor unerwünschten Abschnorchelungen und sonstigen Attacken schützt.


Verbreitung: Laut der regelmäßig auf einen neuen Stand gebrachten Auswertung von SSL Labs von rund 140.000 Webpages bieten gerade mal 67.2% eine adequate TLS-Ausstattung. Das mag im ersten Moment etwas niedrig erscheinen, man darf aber auch nicht vergessen, dass diese Lage vor nicht allzu langer Zeit noch deutlich, deutlich schlimmer war, und durch Maßnahmen wie einer automatischen Warnung von Chrome verbessert wurde. So hat sich auch laut Firefox Telemetry die Anzahl der per https aufgerufenen Websiten sich von 25% auf 75% erhöht. Ebenso bemerkenswert: Einem Jahr nach Einführung von TLS 1.3 unterstützen gerade mal 15% den aktuellen Standart, der absolut überwiegende Teil bietet noch hauptsächlich TLS 1.2 an. Man darf gespannt sein, wie lange es dauert, bis der Großteil den Wechsel vollzogen hat. Auf der anderen Seite bieten 7.5% der Webpages noch Unterstüztung für SSL 3.0 an, einem Standart, der mittlerweile fast so alt ist wie ich selbst, und als nicht sicher gilt.

 

 

 

Henrik Triem
Henrik Triem
Junior Developer

Henrik is Anwendungsentwickler in Ausbildung, verhindeter Rockstar, kaffeegetrieben und Open Source-begeistert. Zuhause lässt er es auch mal ruhiger mit Tee angehen, entspannt an Klavier oder Gitarre, erkundet neue Musik oder treibt sich mit seinen Freunden in Deutschland herum.

SSL/TLS Zertifikate für die Nutzung im internen Netz (apache)

Um verschiedene Dienste im LAN sicher zu nutzen, werden SSL-Zertifikate benötigt. Wir verwenden dafür in manchen Fällen ein selbstsigniertes Zertifikat. Das SSL-Zertifikat enthält Informationen über den Namen des Inhabers, den öffentlichen Schlüssel, eine Gültigkeitsdauer und gegebenenfalls den Namen der Zertifizierungsstelle. Mit dem öffentlichen Schlüssel kann das Zertifikat der Zertifizierungsstelle überprüft werden.

Das SSL-Zertifikat muss zuerst als vertrauenswürdig eingestuft werden, dazu sind bestimmte Rangordnungen der Autoritäten notwendig. Der Browser verfügt über Listen mit Zertifizierungsstellen deren SSL-Zertifikate bedingungslos vertraut werden. Beim Aufrufen einer SSL-verschlüsselten Website, prüft der Browser das Zertifikat auf Gültigkeit der Referenzen und des Herausgebers der Webadresse. Kennt der PC oder Browser den Herausgeber des Zertifikates nicht, meldet er einen Zertifikatsfehler. Diesen Fehler kann man übergehen und seinen Besuch auf der Website fortsetzen.

Selbstsignierte Zertifikate geben diesen Fehler logischerweise immer, da sie nicht von einer Zertifizierungsstelle als gültig und sicher geprüft wurden. Hier signiert der Server selbst für seine Dienste, die von den jeweiligen Clients besucht werden.

Ich zeige euch, wie wir das Zertifikat erstellen und manuell in den Firefox-Browser hinterlegen.

Zuerst müssen wir einen Private-Key erstellen, der immer bei uns verbleibt. Niemand außer uns sollte Zugriff auf diese Datei haben, da der Private-Key später untrennbar von unserem Zertifikat ist. Dazu wechseln wir in das Verzeichnis, indem wir den Schlüssel gerne haben wollen:

openssl genrsa -aes256 -out ca-key.pem 2048

Mit dem Argument -aes256 (Abkürzung für „Advanced Encryption Standard“) verschlüsseln wir unsere Datei mit einer 256Bit Schlüssellänge. Der Key muss eine Länge von 2048bit haben und in unserem Beispiel nenne ich ihn ca-key.pem (nehmt einen Namen, den ihr später leicht eurer Seite hinzufügen könnt). Das pass phrase muss mindestens 4 Zeichen lang sein und darf keine Sonderzeichen enthalten.

Nun kommt die CA-Datei, die die Antragsdaten sowie den öffentlichen Schlüssel zu unserem Private-Key enthält:

openssl req -x509 -new -nodes -extensions v3_ca -key ca-key.pem -days 1024 -out ca-root.pem -sha512

Benennt eure Dateien wieder mit einem beliebigen Namen. Ich nutze hier einige Argumente: -nodes (noDES) encrypted den Private-Key nicht, -x509 gibt das Certificate Data Management an, dass uns dann auch zu -extensions v3-ca führt. Hier wird eine Cryptographie erstellt und es werden Erweiterungen für policies verwendet.

Bei der Erstellung der CA werdet ihr nach einigen Details gefragt, die ihr angeben könnt um das Zertifikat eindeutig zu machen (oder aus Testzwecken einfach leer lassen).

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:

Wir brauchen jetzt noch einen Zertifikats-Key…

openssl genrsa -out zertifikat-key.pem 4096

…erstellen dann unsere CSR-Datei…

openssl req -new -key zertifikat-key.pem -out zertifikat.csr -sha512

…und signieren sie mit unserem eben erstellten Key.

openssl x509 -req -in zertifikat.csr -CA ca-root.pem -CAkey ca-key.pem -CAcreateserial -out zertifikat-pub.pem -days 365 -sha512

Gleiche Vorgehensweise wie zuvor beschrieben, pass phrase eingeben und bei belieben eure Details noch eintragen.

Wir sind fertig!

Jetzt bindet ihr das Zertifikat nur noch in euren Browser mit ein, in meinem Falle nutze ich den Firefox-Browser. Öffnet die Einstellungen und geht auf den linken Reiter “Datenschutz & Sicherheit”. Nun scrollt ihr ganz nach unten bis ihr die Option “Zertifikate” seht. Klickt auf den Button “Zertifikate anzeigen…”, dort öffnet sich ein neues Fenster in dem ihr nun euer erstelltes Zertifikat einpflegen könnt.

Der Browser muss nun geschlossen werden um die Veränderungen anzunehmen. Startet ihn neu und verbindet euch mit eurer Website. Nun müsstet ihr sehen können, dass ein https:// angezeigt wird.

Aleksander Arsenovic
Aleksander Arsenovic
Junior Consultant

Aleksander macht eine Ausbildung zum Fachinformatiker für Systemintegration in unserem Professional Service. Wenn er nicht bei NETWAYS ist, schraubt er an seinem Desktop-PC rum und übertaktet seine Hardware. Er ist immer für eine gute Konversation zu haben.

Realisierung einer clientbasierten Zertifikats-Authentifizierung (Mutual SSL) mit selbstsignierten Zertifikaten auf Linux + Apache

This entry is part 4 of 5 in the series SSL leicht gemacht

Die IT-Landschaften der Unternehmen wachsen prächtig – und auch die Anforderungen an die Sicherheit der dort gespeicherten Daten, denn besonders sensible Daten sind für so manch einen besonders interessant.
Passwörter werden noch heute viel genutzt, aber die vergangenen Jahre haben bewiesen, dass hier vor allem der Nutzer eine Schwachstelle darstellt. Passwörter werden hier sehr bequem; also zu kurz, mehrfach auf verschiedenen Diensten oder leicht zu erraten, gewählt.
Da nützt die beste Verschlüsselung im Zweifel nicht viel, wenn das Passwort auf einer der unzähligen Passwort-Listen im Internet rumschwirrt. Auch Phishing stellt ein Problem dar und nutzt die Unaufmerksamkeit der Nutzer aus. Kürzlich erhielten wir von einem unserer Managed-Services Kunden die Anfrage, ob wir nicht dafür eine Lösung haben. Das Stichwort “clientbasierte Zertifikats-Authentifizierung” kam dabei vom Kunden. Wenn man danach sucht, findet man schnell den Fachbegriff Mutual SSL Authentication (also gegenseitige SSL Authentifikation).
Gesagt, getan. Wir haben eine Lösung auf seinem Managed-Server-System bereitgestellt und zu Abnahmetests aufgefordert – das Ergebnis überzeugt. Für den Zugang zum Webdienst des Kunden braucht man nun kein Passwort mehr und es ist sicherer als zuvor. Aber wie genau funktioniert das?

  1. Der Nutzer beantragt Zugang auf eine geschützte Ressource
  2. Der Server antwortet nun neben seinen TLS-Zertifikat mit seinem Serverzertifikat
  3. Der Client verifiziert das erhaltene Zertifikat
  4. Der Client vertraut dem Zertifikat und übersendet sein Publickey
  5. Der Server überprüft die vom Client erhaltenen Daten
  6. Der Server gewährt dem Client Zugang zum gewünschten Medium

Im nachfolgenden Beispiel werde ich die Vorgehensweise zur Erstellung der selbstsignierten Zertifikate, Konfiguration des Webservers (hier Apache) und Einbindung in den Webbrowser beschreiben. Ausgangssituation ist ein aktuelles Linux mit Apache (dieser nutzt für TLS bereits Zertifikate). Tools wie openssl und vim sehe ich jetzt mal als gegeben.
Wir wechseln zunächst auf die grüne Wiese und erstellen uns einen neuen Ordner, z. B. /usr/local/src/SSL
1. Erstellung eines firmenweiten rootca-Zertifikates-Privatekeys mit 4096 BIT Schlüssellänge

openssl genrsa -out ssl.netways.de_rootca.key 4096

2. Nun erstellen wir ein Serverzertifikat mit 10 Jahren Gültigkeit, dies kann natürlich individuell angepasst werden

openssl req -x509 -new -nodes -key ssl.netways.de_rootca.key -sha256 -days 3650 -out ssl.netways.de_rootca.pem


3. Wir erstellen einen Key unseres ersten Clients, dieser kann natürlich individuell benannt werden, damit die Unterscheidung leichter fällt

openssl genrsa -out ssl.netways.de_client1.key 4096

4. Für den soeben erstellten Client-Key erstellen wir nun eine Zertifikatsanforderung, CSR
Eine Besonderheit, ist hier dass wir als OU (also Organizational Unit, bzw. Abteilung) ein Mitarbeiter-Kürzel (im Beispiel gmimietz) angeben, dazu später mehr

openssl req -new -key ssl.netways.de_client1.key -out ssl.netways.de_client1.csr


5. Wir legen schnell die erforderlichen Daten an, damit wir nicht die ganze OpenSSL-Config umbauen müssen

mkdir -p demoCA/newcerts && mkdir demoCA/certs && mkdir demoCA/crl && echo 00 > demoCA/serial && touch demoCA/index.txt

6. Jetzt signieren wir das CSR des Clients gegen unsere Serverzertifikate und erstellen ein Clientzertifikat mit 10 Jahren Gültigkeit, dies auf Korrektheit überprüfen und bestätigen.

openssl ca -in ssl.netways.de_client1.csr -cert ssl.netways.de_rootca.pem -keyfile ssl.netways.de_rootca.key -out ssl.netways.de_client1.crt -days 3650

7. Abschließend exportieren wir das Clientzertifikat und den Key übertragungstauglich in PKCS12-Format, hierzu wird ein Passwort abgefragt, welches wir später beim Import wieder brauchen.

openssl pkcs12 -export -in ssl.netways.de_client1.crt -inkey ssl.netways.de_client1.key -out NETWAYS_Client_gmimietz.p12

8. wir kopieren unseren rootca in unser ca-Verzeichnis (wichtig, dies muss dort mit crt benannt sein, um im nächsten Schritt eingelesen zu werden)

cp /usr/local/src/SSL-TEST/ssl.netways.de_rootca.pem /usr/local/share/ca-certificates/ssl.netways.de_rootca.crt

9. Zunächst aktualisieren wir unseren Zertifikats-Store mit

update-ca-certificates

10. In der Apache-Config brauchen wir noch ein paar kleine Anpassungen innerhalb der jeweiligen vhost-Definition

SSLCACertificatePath "/etc/ssl/certs"
SSLVerifyClient require
SSLVerifyDepth 5

11. Falls wir einem Zertifikat das Vertrauen entziehen möchten, so müssten wir eine Unterscheidung sicherstellen, deshalb haben wir in Punkt 4 eine OU angegeben, diese dient nur der Unterscheidung

<location />
  SSLRequire (%{SSL_CLIENT_S_DN_OU} ne "gmimietz")
</location>

12. Final starten wir den Apache neu

service apache2 restart

13. Zertifikat auf Client importieren
Wir importieren das Zertifikat (p12-File aus Schritt 7) unseren Browser. Dazu brauchen wir unser Entschlüsselungspasswort wieder, womit wir den Export verschlüsselt haben.
Im Firefox gehen wir hierzu auf Einstellungen -> Datenschutz & Sicherheit -> Zertifikate anzeigen.
Dort importieren wir im Register “Ihre Zertifikate” nun das p12-File und geben einmalig das Passwort ein.

Für die Anlage weiterer Client-Zertifikate führen wir die Schritte 3., 4., 6., 7. erneut aus und unterscheiden mittels Nutzernamen anhand der OU.
Fertig, wird laufen. Bitte noch beachten, dass andere Vhost-Configs natürlich auch abgedichtet werden müssen, falls die in das gleiche Doc-Root mit sensiblen Daten zeigen!
Ja, so tolle Sachen machen wir – was der Kunde sich wünscht, setzen wir um!

Georg Mimietz
Georg Mimietz
Lead Senior Systems Engineer

Georg kam im April 2009 zu NETWAYS, um seine Ausbildung als Fachinformatiker für Systemintegration zu machen. Nach einigen Jahren im Bereich Managed Services ist er in den Vertrieb gewechselt und kümmerte sich dort überwiegend um die Bereiche Shop und Managed Services. Seit 2015 ist er als Teamlead für den Support verantwortlich und kümmert sich um Kundenanfragen und die Ressourcenplanung. Darüber hinaus erledigt er in Nacht-und-Nebel-Aktionen Dinge, für die andere zwei Wochen brauchen.

SSL geknackt! Naja, fast.

Wer kennt das nicht: Da sitzt man beim Kunden (oder auch remote) und debugt ein Programm wie bspw. Icinga 2. Alle Stricke reißen und man ist dazu genötigt, den Netzwerk-Verkehr zu inspizieren… Ach ja, das ist ja alles SSL-verschlüsselt. Und dies ist auch nicht abschaltbar, selbst wenn man es dürfte. Und jetzt?
Genau in dieser Zwickmühle befand sich neulich ein Kollege und wandte sich kurzerhand an einen der Sicherheitsfanatiker hier in der Firma – mich.
Als solcher kenne ich die Maschen der dunklen Seite der Macht. So auch bspw. diese hier:

  1. Wireshark, den Netzwerk-Verkehr und den privaten Schlüssel von Icinga 2 Du brauchst: /var/lib/icinga2/certs/HOST_FQDN.key
  2. Den Schlüssel in Wireshark Du hinterlegst: Preferences (Command + Komma) / Protocols / SSL / RSA key list / Edit
  3. Den Netzwerk-Verkehr automatisch Wireshark entschlüsselt

So jedenfalls die Theorie ist…


In der Theorie sind Theorie und Praxis gleich – in der Praxis nicht. So wurden auch wir davon überrascht, dass sich am mitgeschnittenen Kauderwelsch nichts geändert hat. “Stimmt…”, fiel mir wieder ein, “da war was…”
 

Das DH macht den Unterschied


Zu Beginn einer SSL-Verschlüsselten Verbindung handeln Client und Server u.a. den konkreten Verschlüsselungsalgorithmus aus. In diesem Fall waren die beiden besonders schlau und wählten einen “Diffie Hellman” Algo. Schön für den Sysadmin, doof für uns. Der Zweck von Diffie Hellman ist es nämlich, genau solche Machenschaften der dunklen Seite der Macht dumm aus der Wäsche schauen zu lassen.
Zum Glück hatte ich noch ein Ass im Ärmel. Icinga 2 gibt dem Admin nämlich die Möglichkeit, die zu verwendenden Algorithmen einzuschränken:

--- /etc/icinga2/features-available/api.conf
+++ /etc/icinga2/features-available/api.conf
@@ -7,4 +7,6 @@
   //accept_commands = false
   ticket_salt = TicketSalt
+
+  cipher_list = "AES256-SHA256"
 }

Im konkreten Fall habe ich mich der Einfachheit halber auf einen einzigen nicht-DH Algorithmus beschränkt:

openssl ciphers |tr : \\n |grep -vFe DH

Es aber gingen theoretisch auch alle:

openssl ciphers |tr : \\n |grep -vFe DH |paste -sd : -

Nach einem Neustart von Icinga 2 und einer Wiederholung der HTTP-Anfragen hatten wir dann endlich Transparenz à la DSGVO (die grün markierten Pakete):

 

Fazit

Viel Spaß beim debuggen (lasst euch nicht vom Datenschutzbeauftragten erwischen) und vergesst nicht, die Lücke hinterher abzudrehen.
Und wenn bei euch wirklich alle Stricke reißen, helfen wir euch gerne weiter.

Alexander Klimov
Alexander Klimov
Developer

Alexander hat 2017 seine Ausbildung zum Developer bei NETWAYS erfolgreich abgeschlossen. Als leidenschaftlicher Programmierer und begeisterter Anhänger der Idee freier Software, hat er sich dabei innerhalb kürzester Zeit in die Herzen seiner Kollegen im Development geschlichen. Wäre nicht ausgerechnet Gandhi sein Vorbild, würde er von dort aus daran arbeiten, seinen geheimen Plan, erst die Abteilung und dann die Weltherrschaft an sich zu reißen, zu realisieren - tut er aber nicht. Stattdessen beschreitet er mit der...

Icinga Web 2 – todsicher.

Nachdem ich mich zuletzt in den Sänften Apples ausgeruht habe, geht es heute zurück ans eingemachte – oder besser gesagt: Back to the Roots! Selbst als alter Icinga Web 2– und Modulentwickler habe ich noch längst nicht alle Vorzüge dieses Feldes beansprucht.
Einer davon ist die Möglichkeit, alles Mögliche für die Authentifizierung herzunehmen. Einzige Voraussetzung: der Webserver muss mitspielen. Manche Authentifizierungsverfahren gelten als sicher, andere nur wenn das Passwort weise gewählt ist… aber zumindest eines ist todsicher: TLS (aka “SSL”) Client-Zertifikate. Die Vorteile liegen auf der Hand:

  • mit der folgenden Anleitung relativ einfach umzusetzen
  • Erstellung unsicherer Zertifikate (analog zu den Passwörtern) nicht möglich
  • keine geheimen/privaten Schlüssel werden während der Authentifizierung übertragen (kann man von Passwörtern nicht behaupten)
  • Unbefugte werden schon vom Webserver “abgefangen” und kommen gar nicht erst an Icinga Web 2 heran

Na dann riegeln wir mal ab…

Zertifikate erstellen

Sowohl der Webserver als auch jeder Client brauchen je ein TLS-Zertifikat, das von einer der Gegenseite vertrauenswürdigen Zertifizierungsstelle (CA) unterschrieben ist. Diese Unterschriften könnte ich einkaufen oder kostenlos beziehen, aber der Einfachheit halber erstelle ich mir für beide Seiten je eine CA und unterschreibe je ein Zertifikat.
Die Sänfte Apples bieten in der Schlüsselbundverwaltung einen Zertifikatsassistenten, aber auch der eingefleischte Linux-Sysadmin hat mit Openssl ein Umfangreiches Bordmittel zur Verfügung.

Server

Im Gegensatz zum Client müssen Nutzer beider Betriebssysteme darauf achten, dass das Server-Zertifikat über einen sog. “subjectAltName” verfügt. Sonst staunt man beim Aufbau der Umgebung nicht schlecht: Trotz Vertrauen in die CA und passendem commonName erkennt zumind. Google Chrome das Zertifikat nicht an.
Die hervorgehobenen Stellen müssen höchst wahrscheinlich an die eigene Umgebung angepasst werden – z.B. eine Domäne statt einer IP Adresse und damit auch CN_KIND=DNS.

openssl req -x509 -newkey rsa:4096 -subj '/CN=example com CA - server' -md5 -keyout ca-server.key -out ca-server.crt -nodes
CN_KIND=IP ; CN=172.28.128.3
openssl req -newkey rsa:4096 -subj "/CN=$CN" -keyout server.key -out server.csr -nodes
openssl x509 -req -in server.csr -sha512 -out server.crt -CA ca-server.crt -CAkey ca-server.key -CAcreateserial -extensions SAN -extfile <(printf '[SAN]\nsubjectAltName=%s:%s' "$CN_KIND" "$CN")

Client

Bis auf den hier nicht nötigen “subjectAltName” – das gleiche in grün.

openssl req -x509 -newkey rsa:4096 -subj '/CN=example com CA - client' -md5 -keyout ca-client.key -out ca-client.crt -nodes
openssl req -newkey rsa:4096 -subj '/CN=Alexander Klimov' -keyout client.key -out client.csr -nodes
openssl x509 -req -in client.csr -sha512 -out client.crt -CA ca-client.crt -CAkey ca-client.key -CAcreateserial

Kleines Easter-Egg am Rande: Es spielt keine Rolle, ob ein Root-CA-Zertifikat mit SHA512, MD5 oder handschriftlich signiert wurde, da es nur auf dessen Vorhandensein im eigenen Schlüsselbund ankommt.

Zertifikate importieren

Ein nicht offizielles Server-CA-Zertifikat und das eigene Client-Zertifikat muss natürlich in den Browser importiert werden. Dafür ist ein kleiner Zwischenschritt nötig:

alexanders-mbp:debian aklimov$ openssl pkcs12 -in client.crt -inkey client.key -export -out client.p12
Enter Export Password:
Verifying - Enter Export Password:
alexanders-mbp:debian aklimov$

“client.p12” (und evtl. “ca-server.crt”) kann anschließend in den Browser importiert werden. Leider ist ein temporäres Passwort unumgänglich, aber “123456” o.ä. geht auch.
Wer diesen Schritt verschleppt, fällt bei der Einrichtung von Icinga Web 2 auf die Nase: Entweder beschwert sich der Browser über eine “nicht sichere” Verbindung oder der Webserver weist die Verbindung ab.

Icinga Web 2 installieren

DIST=$(awk -F"[)(]+" '/VERSION=/ {print $2}' /etc/os-release); \
echo "deb http://packages.icinga.com/debian icinga-${DIST} main" >  /etc/apt/sources.list.d/${DIST}-icinga.list; \
echo "deb-src http://packages.icinga.com/debian icinga-${DIST} main" >>  /etc/apt/sources.list.d/${DIST}-icinga.list
wget -qO - https://packages.icinga.com/icinga.key | apt-key add -
apt update
apt install icingaweb2 -y
cp /vagrant/server.crt /etc/ssl/certs/todsicher.pem
cp /vagrant/server.key /etc/ssl/private/todsicher.pem
cp /vagrant/ca-client.crt /etc/ssl/certs/todsicher-ca.pem
a2dissite 000-default.conf
a2enmod ssl
a2enmod headers
vim /etc/apache2/sites-available/todsicher.conf
a2ensite todsicher.conf
service apache2 restart

Nachdem das Icinga-Repository hinzugefügt wurde, kann auch schon das Paket “icingaweb2” installiert werden. Dieses bringt den Apache-Webserver mit und integriert sich entsprechend. Darauf hin müssen die Zertifikate installiert und deren Verwendung konfiguriert werden.

/etc/apache2/sites-available/todsicher.conf

<VirtualHost *:80>
	ServerAdmin webmaster@localhost
	DocumentRoot /var/www/html
	ErrorLog ${APACHE_LOG_DIR}/error.log
	CustomLog ${APACHE_LOG_DIR}/access.log combined
	RewriteEngine On
	RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R=301,L]
</VirtualHost>
<VirtualHost *:443>
	ServerAdmin webmaster@localhost
	DocumentRoot /var/www/html
	ErrorLog ${APACHE_LOG_DIR}/error.log
	CustomLog ${APACHE_LOG_DIR}/access.log combined
	SSLEngine on
	SSLCertificateFile /etc/ssl/certs/todsicher.pem
	SSLCertificateKeyFile /etc/ssl/private/todsicher.pem
	Header always set Strict-Transport-Security "max-age=2678400"
	SSLCACertificateFile /etc/ssl/certs/todsicher-ca.pem
	SSLVerifyClient require
	SSLVerifyDepth 1
	SSLUserName SSL_CLIENT_S_DN_CN
</VirtualHost>

Sollte jemand auf die Idee kommen, den Server mit HTTP anzusprechen, wird er bedingungslos auf HTTPS umgeleitet – und diese Tat auch nicht wiederholen.
Außerdem wird ein TLS-Client-Zertifikat verlangt, das von entsprechender CA unterschrieben sein muss. Dessen commonName wird im Erfolgsfall als Nutzername behandelt – und genau auf diesen Zug springt Icinga Web 2 auf…

Icinga Web 2 einrichten

Nun greift man via Browser auf Icinga Web 2 zu und richtet es wie gewohnt ein… naja, fast wie gewohnt…

Nachdem der Browser nach dem zu verwendenden Client-Zertifikat gefragt hat, grüßt die Anmeldemaske, die auf den Einrichtungsassistenten verweist. Dieser fordert wie zu erwarten den Einrichtungstoken. Nach dessen Eingabe habe ich ausnahmsweise sämtliche Module deaktiviert, da… dieser Blogpost eh schon viel zu lang ist. (Aber nur die Ruhe, wir haben’s schon fast.)
Nach einer kleinen Anpassung der PHP-Konfiguration und einem darauf folgenden Neustart des Webservers…

root@contrib-stretch:~# perl -pi -e 's~^;date\.timezone =.*?$~date.timezone = Europe/Berlin~' /etc/php/7.0/apache2/php.ini
root@contrib-stretch:~# service apache2 restart

… bestätigt auch schon die erste Ausnahme die Regel: Der Typ des Authentifizierungs-Backends ist auf “Extern” zu setzen, da dies der Webserver übernimmt. Die folgenden Einstellungen des Backends können bei dem voreingetragenen belassen werden. Wenn alles richtig konfiguriert wurde, schlägt der Assistent den bedienenden Benutzer als Administrator vor. Ab da bleiben nur noch die Formalitäten…

Fazit

Wer auf das Monitoring-System Zugriff hat, hat viel Macht.

Bernd Erk, NETWAYS CEO
Tja Bernd, auf mein Monitoring-System hat kein Unbefugter mehr Zugriff – todsicher.

Alexander Klimov
Alexander Klimov
Developer

Alexander hat 2017 seine Ausbildung zum Developer bei NETWAYS erfolgreich abgeschlossen. Als leidenschaftlicher Programmierer und begeisterter Anhänger der Idee freier Software, hat er sich dabei innerhalb kürzester Zeit in die Herzen seiner Kollegen im Development geschlichen. Wäre nicht ausgerechnet Gandhi sein Vorbild, würde er von dort aus daran arbeiten, seinen geheimen Plan, erst die Abteilung und dann die Weltherrschaft an sich zu reißen, zu realisieren - tut er aber nicht. Stattdessen beschreitet er mit der...

Monthly Snap January > OSDC 2018, MySQL Cluster Configuration, Firmware version 1.07, Icinga Camp 2018, OSBConf 2018


Hello Two Thousand Eighteen!! It‘s been one month already and lot had happened. Michael shared some information on Modern open source community platforms with Discourse, Thomas took us security tour of Generational change for GnuPG/ PGP keys, Keya discussed 5 reasons why you should be a speaker at OSDC 2018 in Berlin.
Georg said SSL made easy – set up forced forwarding of HTTP to HTTPS, Marius’s A plea for the daydream, Johannes analysed the Galera MySQL Cluster configuration, Martin introduced NETWAYS Monitor – The New Firmware version 1.07.
Keya welcomes you to be a speaker at OSBConf 2018 in Cologne, Gunnar talked about Userspace – Tracing with DTrace, Julia shared upcoming Icinga Camp Berlin 2018 #Monitoringlove, Ufuk talked about server administration with ISPConfig 3. In last Keya introduced the First speakers of OSDC 2018! Happy February!!

Keya Kher
Keya Kher
Marketing Manager

Keya ist seit Oktober 2017 in unserem Marketing Team. Sie kennt sich mit Social Media Marketing aus und ist auf dem Weg, ein Grafikdesign-Profi zu werden. Wenn sie sich nicht kreativ auslebt, entdeckt sie andere Städte oder schmökert in einem Buch. Ihr Favorit ist “The Shiva Trilogy”.  

SSL leicht gemacht – forcierte Weiterleitung von HTTP auf HTTPS einrichten

This entry is part 3 of 5 in the series SSL leicht gemacht


In den vorherigen Teilen der Serie wurde bereits die Erstellung und Einbindung der Zertifikate beschrieben. Eines Tages wünscht sich der Admin jedoch die sichere Verbindung aller Seitenbesucher, ohne dass diese manuell ein https voranstellen müssen. Gerade bei einer Migration einer bestehenden Seite wird der
Parallelbetrieb erst nach eingehenden Tests eingestellt und das SSL jeweils forciert, um Seitenbesucher nicht mit ungültigen Zertifikaten oder Mixed Content zu verunsichern.
Die eigentliche Umsetzung ist dann relativ einfach und wird in unserem Beispiel direkt in der Vhost-Definition des Apache vorgenommen. Übrigens, die verfügbaren Vhosts sind zu finden unter: /etc/apache2/sites-available. Hier wird nun der HTTP-Vhost (Port 80) um den unten aufgezeigten Block mit den Rewrites erweitert.

<VirtualHost *:80>
  ServerAdmin webmaster@netways.de
  ServerName www.netways.de
  DocumentRoot /var/www/html/netways.de/
  <Directory /var/www/html/netways.de/>
   Options FollowSymLinks
   AllowOverride All
  </Directory>
  ErrorLog /var/log/apache2/error.log
  LogLevel warn
  CustomLog /var/log/apache2/access.log combined
  RewriteEngine on
  RewriteCond %{SERVER_NAME} =www.netways.de [OR]
  RewriteCond %{SERVER_NAME} =netways.de
  RewriteRule ^ https://%{SERVER_NAME}%{REQUEST_URI} [END,QSA,R=permanent]
 </VirtualHost>

Damit das Ganze nun auch funktioniert, muss natürlich der SSL-Vhost unter Port 443 erreichbar sein. Wie dieser initial erstellt wird, ist im Artikel SSL-Zertifikat einbinden beschrieben.
Übrigens: wer Let’s Encrypt verwendet, wird im Wizard gleich gefragt, ob SSL forciert werden soll. Der Wizard übernimmt dann die oben gezeigten Schritte. Wie man Let’s Encrypt einsetzt, haben wir natürlich auch schon einmal beschrieben. Damit später keine Seitenbesucher verloren gehen, sollte der HTTP-Vhost, der auf Port 80 läuft, nicht abgeschaltet werden. Die Verbindung ist mit dieser Maßnahme sicher und alle Besucher werden auf https umgeleitet.
Wer damit gar nichts zu tun haben will, und trotzdem stets auf der sicheren Seite sein will, der kann natürlich seine Seite auch bei NETWAYS im Managed Hosting betreuen lassen. Hier kümmern wir uns darum.
In den anderen (teilweise noch kommenden) Blogposts zum Thema SSL leicht gemacht geht es um:

Georg Mimietz
Georg Mimietz
Lead Senior Systems Engineer

Georg kam im April 2009 zu NETWAYS, um seine Ausbildung als Fachinformatiker für Systemintegration zu machen. Nach einigen Jahren im Bereich Managed Services ist er in den Vertrieb gewechselt und kümmerte sich dort überwiegend um die Bereiche Shop und Managed Services. Seit 2015 ist er als Teamlead für den Support verantwortlich und kümmert sich um Kundenanfragen und die Ressourcenplanung. Darüber hinaus erledigt er in Nacht-und-Nebel-Aktionen Dinge, für die andere zwei Wochen brauchen.

NETWAYS Web Services: Connect to your own Domain!

Our team has continued to improve the NETWAYS Web Services products for providing more comfort to our customers. Now any app can be run under its own Domain Name in combination with its own SSL certificate. This option is available for the following products:

The implementation within the product is quite simple. After your app has been created successfully, you will find a new webform in your app’s Access tab. Here is an example of a Request Tracker app:

As the webform shows, customers simply have to enter a registered Domain Name and their SSL Certificate as well as their SSL Key. The implementation in the app will be done by our NWS platform fully automated. Customers only need to take care about the quality and correctness of the certificate and to make sure they enter the DNS record correctly on their Domain Name Server. The IP address needed will be indicated underneath the webform in the information section. Furthermore, it is still possible to set an additional CName for your app. This means that your customized Domain Name and the CName can be used in parallel. Furthermore, the platform generated standard URL will stay valid and customers can always go back to the initial settings by removing their entries from the webform.
After clicking the save button, the app will be restarted and all changes will be taken into production immediately.
The bonus of this option is clear: Anybody working with your apps will be glad to use easy to read and memorize URLs. Furthermore, company identity and culture is even more important today than ever. So why not also provide your SuiteCRM, Rocket.Chat or Nextcloud with a well branded URL?
More information can be found on our NWS homepage, in any of our product sections or by contacting us via the NWS livechat.
Important note: All NWS products are up for a 30 day free trial!

Postfix – TLS / SSL Verschlüsselung aktivieren

In aller Munde ist es stets, dass man verschlüsselte Verbindungen nutzen soll. Auch beim Versand von E-Mails sollte man auf Verschlüsselung setzen, damit die Kommunikation entsprechend sicher abgewickelt wird. Auch Postfix bietet diese Möglichkeit.

Verschlüsselung der Verbindung zwischen Client und Server

Bei Ubuntu werden standardmäßig einige selbstsignierte Zertifikate mitgeliefert, welche per Default auch schon im Postfix hinterlegt sind.

smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key

Benutzt man diese, kommen bei allen gängigen E-Mail Clients jedoch Hinweise, dass die Verbindung eventuell nicht sicher sei. Beseitzt man kein gültiges Zertifikat, kann man hier auch ein Zertifikat von LetsEncrypt verwenden. Mehr dazu kann man auch im Artikel “kostenfreie TLS-Zertifikate mit Let’s Encrypt” lesen. Wie man ein konstenpflichtiges Zertifkat erwerben kann, wird zudem im Artikel “SSL leicht gemacht – CSR und Keyfile erstellen und Zertifikat ordern” beschrieben. Alternativ kann hierzu auch unser Support kontaktiert werden.
Anschließend ist die Option smtpd_tls_security_level zu befüllen – per Default ist diese nicht gesetzt.

smtpd_tls_security_level = may

Durch “may” wird besagt, dass TLS Verschlüsselte Clients unterstützt werden, es aber nicht zwingend notwendig ist. Wer TLS Verschlüsselte Kommunikation forcieren möchte, kann hier entsprechend “enforce” setzen, damit es erzwungen wird und Clients immer verschlüsselt mit dem Server Kommunizieren. Damit wäre es grundlegend getan, man sollte jedoch noch darauf achten gewisse SSL Versionen, sowie Cipher zu verbieten, da diese schon etwas älter sind und daher nicht mehr als sicher gelten. Anbei eine Beispielkonfiguration, diese muss je nach Endgerät ggf. auch angepasst werden.

smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3
smtpd_tls_mandatory_ciphers = high
smtpd_tls_exclude_ciphers = ECDHE-RSA-RC4-SHA
smtpd_tls_mandatory_exclude_ciphers = ECDHE-RSA-RC4-SHA

Möchte man zudem die TLS Informationen auch im Header sehen, kann man noch folgende Option setzen:

smtpd_tls_received_header = yes

Verschlüsselung der Verbindung zwischen Servern

Damit wäre die Client <-> Server Kommunikation soweit verschlüsselt und viele denken sich sicher, das wäre es. Zwischen Mailservern findet aber natürlich ebenfalls Kommunikation statt, welche verschlüsselt werden soll. Dies wird entsprechend wie folgt aktiviert:

smtp_tls_cert_file = /etc/ssl/certs/ssl-cert-snakeoil.pem
smtp_tls_key_file = /etc/ssl/private/ssl-cert-snakeoil.key
smtp_tls_security_level=may

Ähnlich wie bei der Client-Server-Kommunikation wird auch hier durch “may” besagt, dass Verschlüsselung genutzt wird insofern es möglich ist. Im Header kann man dies nun auch nachvollziehen, indem man nach ähnlichen Daten sucht:
Ohne Verschlüsselung (smtp_tls_security_level=none):
Received: from mail.domain1.tld (mail.domain1.tld [1.2.3.4]) by mail.domain2.tld (Postfix) with ESMTP id 1234567890
Mit Verschlüsselung (smtp_tls_security_level=may):
Received: from mail.domain1.tld (mail.domain1.tld [1.2.3.4]) by mail.domain2.tld (Postfix) with ESMTPS id 1234567890

Verschlüsselung der IMAP Verbindung

Damit wären wir fertig mit Postfix. Anbei noch einige Informationen für jene, die Dovecot nutzen um E-Mails von Ihrem Server per IMAP abzurufen, denn diese Verbindungen wollen ja auch noch verschlüsselt werden. Dies funktioniert sehr simpel – die Konfigurationen dafür finden wir normalerweise unterhalb von “/etc/dovecot/conf.d/“, meist handelt es sich dabei um die Datei “10-ssl.conf“.
Dort editieren, bzw. erweitern wir unsere entsprechenden Konfigurationen um folgende Zeilen:

ssl = yes
ssl_cert = </etc/ssl/certs/ssl-cert-snakeoil.pem
ssl_key = </etc/ssl/private/ssl-cert-snakeoil.key

Zudem nehmen wir noch einige Feinjustierungen vor, wie bereits zuvor bei Postfix. Beachten sollten wir aber, dass sich die Cipher-Liste je nach Endgerät auch ändern kann und man diese etwas anpassen muss. Diese dient hier nur als Beispiel.

ssl_protocols = !SSLv3 !SSLv2
ssl_cipher_list = EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EECDH+ECDSA+SHA384:EECDH+ECDSA+SHA256:EECDH+aRSA+SHA384:EECDH+aRSA+SHA256:EECDH+aRSA+RC4:EECDH:EDH+aRSA:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!RC4
ssl_dh_parameters_length = 2048

Auch hier gilt: Hat man bereits ein gültiges Zertifikat, kann man dieses hier gerne verwenden um Fehler im E-Mail Client zu verhindern. Nun ist noch in der “10-auth.conf” die folgende Einstellung wichtig:

disable_plaintext_auth = no

Damit wird ein ähnlicher Effekt erzielt, wie bereits bei Postfix wenn wir “may” als Option gesetzt haben. Wir können nun TLS nutzen, müssen es aber nicht zwingend. Wer hier auf absolute Nummer sicher gehen möchte, kann natürlich auch hier “yes” setzen.
Mit “dovecot -n” können wir die aktiven Einstellungen überprüfen.

Fabian Rothlauf
Fabian Rothlauf
Senior Systems Engineer

Fabian kehrte nach seinem fünfjährigen Ausflug nach Weimar zurück in seine Geburtsstadt Nürnberg und hat im September 2016 bei NETWAYS als Systems Engineer im Hosting Support angefangen. Der Mopsliebhaber, der schon seit seinem 16. Lebensjahr ein Faible für Adminaufgaben hat, liebt außerdem Grillen, Metal und Computerspiele. An seinem Beruf reizt ihn vor allem die Abwechslung, gute Weiterentwicklungsmöglichketen und dass es selten mal einen Stillstand gibt. Nachdem er die Berufsschulzeit bereits mit Eric und Georg genießen...

SSL leicht gemacht – Zusammengehörigkeit von Zertifikaten überprüfen

This entry is part 5 of 5 in the series SSL leicht gemacht

Kürzlich hatten wir den Fall, dass uns ein Zertifikat auf einen alten CSR ausgestellt wurde und wir beim Einbinden in den Webserver Fehler erhielten.
Im Apache äußerte sich das ganze mit der Logausgabe:

[error] Unable to configure RSA server private key
[error] SSL Library Error: 185073780 error:0B080074:x509 certificate routines:X509_check_private_key:key values mismatch

Dahingehend wurde bei der Einrichtung und Erneuerung der Zertifikate bei uns der Workflow angepasst. Jetzt werden zusätzlich vor dem Einlesen der Config noch die Prüfsummen der einzelnen Bestandteile verglichen, um solche Fehler zu vermeiden.
Mit den nachfolgenden Kommandos lassen sich die jeweiligen Prüfsummen ausgeben. Diese müssen jeweils zu allen anderen übereinstimmen.

openssl rsa -noout -modulus -in /etc/apache2/ssl/netways.de/netways.de.key | md5sum
d0ed27eb1ecf771abc1e789c96e9b640
openssl req -noout -modulus -in /etc/apache2/ssl/netways.de/netways.de.csr | md5sum
d0ed27eb1ecf771abc1e789c96e9b640
openssl x509 -noout -modulus -in /etc/apache2/ssl/netways.de/certificate.crt | md5sum
d0ed27eb1ecf771abc1e789c96e9b640

Dann klappts auch mit dem Zertifikat und man kann sich sicher sein, alle zusammengehörigen Dateien zu haben.
Hinweis: Im Internet gibt es SSL Validation Checker wie Sand am mehr, allerdings rate ich auch an dieser Stelle dringend davon ab, SSL Keyfiles aus Produktionsumgebungen aus der Hand zu geben und in ein Online-Formular einzufügen. Diese Online-Checker greifen übrigens auch nur auf dieses einfache Verfahren zurück.
In den anderen (teilweise noch kommenden) Blogposts zum Thema SSL leicht gemacht geht es um:

Übrigens: Zertifikate müssen nichts kosten. Eine Alternative mittels Letsencrypt ist hier beschrieben.

Georg Mimietz
Georg Mimietz
Lead Senior Systems Engineer

Georg kam im April 2009 zu NETWAYS, um seine Ausbildung als Fachinformatiker für Systemintegration zu machen. Nach einigen Jahren im Bereich Managed Services ist er in den Vertrieb gewechselt und kümmerte sich dort überwiegend um die Bereiche Shop und Managed Services. Seit 2015 ist er als Teamlead für den Support verantwortlich und kümmert sich um Kundenanfragen und die Ressourcenplanung. Darüber hinaus erledigt er in Nacht-und-Nebel-Aktionen Dinge, für die andere zwei Wochen brauchen.